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Process-Dependent Risk of Delayed
Health Effects for Welders
by Richard M. Stern*

In most industrialized countries large numbers of workers are exposed to welding fumes.
Although the general pattern of welders' health may not significantly differ from that of workers
in other dusty industrial occupations which demonstrate elevated incidence of respiratory tract
diseases with long latency periods, the extremely wide range of substances at potentially high
concentrations produced by various welding technologies may give rise to undetected process-
specific high-risk working conditions: ("hot spots"). The origin, prevalence and range of
magnitude of such hot spots, especially for cancer of the respiratory tract, is discussed, with
emphasis placed on the assessment of risk resulting from exposure to Cr(VI) and Ni accompany-
ing the use of various technologies for the welding of stainless and high alloy steels. The wide
variation of health effects found within the industry, however, indicates the need for a standard
protocol for future epidemiological studies, as well as for the development of suitable
methodologies for experimental risk assessment.

Introduction
The use of welding as a technology for the joining

of materials occurs worldwide, engaging of the
order of 0.2-2% of the working population in typical
industrialized countries. The major processes have
been in universal use for of the order of 50 years,
and materials and hence exposures have been
shown to be, under similar circumstances, compa-
rable throughout the world. The technology is
extremely labor-intensive, labor accounting for
80-90% of production costs for all but the most
modern automatic processes. However, new pro-
cesses with higher productivity having an increased
range of applicability are continuously being intro-
duced. Since these demonstrate typical doubling
times (in terms of their absolute use) of 7-10 years,
depending on the details of the economic growth in
the individual country, some processes which cur-
rently account for significant worker exposure were
relatively rare 20 years ago.
The nature of the technology is such that, when-

ever an arc is struck, the resulting high tempera-
ture which melts both work piece and consumable
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wire or rod produces significant amounts of vapor-
ized metal and (where present) slag formers and
flux, which condense in the rising plume of heated
air to form a high local concentration (upwards of
100 mg/m3) of a complex mixture of gases, oxides
and other compounds, whose chemistry is deter-
mined by the technology, materials and welding
parameters used in each case.
The possibility of high, localized concentrations

of a wide variety of biologically active substances
which in turn have a wide range of toxicity [e.g.,
03, NO2, Cr(VI), V, As, Mn, Ni, Be, Cu, Na, K, Si,
F, Pb] represents a potential source of health risk
to significant numbers of workers throughout the
world. The magnitude of actual risks which occupa-
tional exposures represent are however largely
unknown and uninvestigated. Since the fume con-
centrations of various substances vary a millionfold
from process to process, and since individual expo-
sure can depend to a large extent on job situation,
one can anticipate that the average risk arising
from welding, for a given welder, or any given
welding population, and therefore for the welding
industry as a whole, is not homogeneous but is
made up of a range of process and job-specific risks
whose order of magnitude could be estimated by a
proper risk assessment (1, 2), based on knowledge

235



of the range of process and job specific exposures
involved.
The observation of a wide range in the nature and

degree of health effects among welders using sim-
ilar technologies in different localities, and between
local users of different technologies indicates that a
number of variables determine exposure and hence
actual risk, even within a given welding process.
Any attempt to reduce occupational health risk
must therefore be based on an understanding of
these parameters, and the way in which they might
affect the nature of the material produced (e.g., the
chemistry of the consumables), the rate at which
fume is generated (e.g., the values of the welding
variables; voltage, polarity, current, arcing time),
the local fume concentration (e.g., type of ventila-
tion) or the background exposure (e.g., workshop
mix of technologies and applications).
Welders could be used as suitable model popula-

tions for studies of process or occupation dependent
risk provided one has a knowledge of: (a) the
magnitude of available populations and their distri-
bution among various technologies, (b) the types of
exposures appropriate to these subcohorts and
(c) the techniques necessary to estimate the origin
and magnitude of risk accompanying each class of
exposure. One useful approach to establishing the
necessary methodology is to attempt to identify
specific job situations which might be associated
with high degrees of excess risk, i.e., process-
dependent "hot spots."

Distribution of Welding
Populations

Types of Processes
There exist approximately 20 major technologies

within the welding industry which are used on ten
major classes of materials providing the possibility
for of the order of 5000-10,000 different working
environments due to the possible variations in com-
position of workpiece, consumables and welding
variables.
Manual metal arc welding (MMA) uses short

lengths of electrode coated with a complex material
which provides for flux, slag and protection from
oxidation through its melting and decomposition.
Ten major electrode producers, each offering 100
different electrodes, which can be welded with three
types of polarity (AC, +DC), on several types of
joints, account for 3000-5000 separate exposures
which differ from each other by a factor of two or
more in the absolute concentration of at least one of
the 14 major chemical constituants of welding fume.
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Metal inert gas welding (MIG) uses a continuous
wire electrode and an inert gas (e.g., argon) which
provides a shield against oxidation. For some classes
of materials, an active gas (e.g., C02, 02) is mixed
with the inert gas to provide better surface proper-
ties (MAG process).
Tungsten inert gas welding (TIG) uses a nonmelting

electrode and occasionally extra filler material.
Gas welding uses an oxy-acetylene or similar

flame to melt the work piece.
Submerged arc welding (SA) uses a fully auto-

mated process where the arc is maintained under a
covering of powdered flux.

In spot welding, material is joined by local resis-
tive heating (provided by a transformed current
pulse) under electrode pressure.

Cutting, burning and air (arc) gouging are pro-
cesses involving the preparation of work pieces and
are frequently performed by welders, their assis-
tants, or special workers within the same trade.
The major classes of materials are: mild steel

(MS), an alloy of iron, carbon, silicon, and occasion-
ally molybdenum or manganese; stainless and high
alloy steel (SS), containing iron, nickel, and chro-
mium, and occasionally cobalt, vanadium, manga-
nese, and molybdenum; aluminum (AL), either pure,
or as an alloy with magnesium, silicon and/or occa-
sionally chromium.

Distribution of Welders
Worldwide distribution of welders among the

different technologies and their applications is difficult
to determine directly because the average number
of welders per firm is small (of the order of ten), and
a large fraction (30-50%) of individuals exposed to
welding fumes are not full-time welders but are also
employed in allied trades. The best indirect method
of estimating national welding populations is to
determine the local use of welding consumables and
assume 500 kg of electrodes and 2500 kg of wire per
man-year for MMA and MIG welding, respectively.
Unfortunately the competitiveness of the market
for electrodes tends to make such information a
trade secret, but from unpublished trade figures it
is possible to estimate the distribution in more
common categories, as is shown in Table 1.
Two countries, Sweden and Germany, have re-

cently conducted detailed surveys of their welding
industries. The results presented in Table 2 show
that there exist wide international variations in the
relative distribution of weld ing activity by technol-
ogy and material. In general, however, the five
combinations, MIG/MS, MIG/SS, MIG/Al, MMA/MS,
and MMA/SS account for between 60-70% of all
welders.
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Table 1. Distribution of welders by country for various processes

No. of welders
Country Process Stainless steel Other Total

Sweden, 1974a MMA 5,400 18,600 24,000
Holland, 1978b 3,500 31,300 34,800
Japan, 1978C 80,000 350,000 430,000
U.S.A., 1976d 500,000
Germany, 1970e 13,000 97,000
Norway, 1978b 1,200 (?) 21,000
Great Britain, 1978b 10,000 (?) 87,000
Spain, 1978b 1,600 57,000
France, 1978 9,000 81,000
U.S.S.R., 1980f 1,500,000
Sweden MIG+MAG+TIG 3,100 10,000 13,200
Holland 1,460
Japan 30,000
U.S.A. 1,900 57,000 58,900
Germany 66,000
U.S. S. R. 200,000

Sweden Sub. 780
Holland Arc
Japan 15,000
U.S.A. 10,000
Germany

Sweden Other
Holland (incl. gas)
Japan 1,000
U.S.A.
Germany 106,000

aData of Ulfvarson (3).
bData of van der Sluis (4).
CData of Masumoto et al. (5).
dData of Jefferson (6).
eData of Flemming and Sossenheimer (7).
fEstimated.

Process-Specific Welders' Exposure
Each technology produces a unique type of aero-

sol, of which 80-90% of the chemistry is determined
by the composition of the consumable material,
which is chosen to be metallurgically compatible
with that of the work piece. To a first approxima-
tion, five combinations of the processes described
above with various materials provide upwards of
70% of the total exposure, listed in order of
complexicity of fume composition as follows:
(a) MIG/AL: aluminum oxide, ozone; (b) MIG/MS
(MAG/MS): ferric oxide, manganese, silicon, cop-
per, nitrogen dioxide; (c) MIG/SS: same as MIG/MS
plus nickel, chromium, ozone; (d) MMA/MS: same
as MIG/MS plus sodium, potassium, molybdenum,
fluorine, titanium, calcium, aluminum; (e) MMA/SS:
same as MMA/MS plus chromium, nickel, vanadi-
um. (Approximately 40% of MMA/MS welding is
performed on plates coated with shop primer, pro-
October 1981

ducing in such cases an additional 1-5% organic gas
due to the pyrolytic decomposition of the epoxy or
other polymer binder: welding fumes are otherwise
usually free of organic material. Cutting and goug-
ing provide high exposures to the oxides of iron,
carbon and nitrogen and occasionally to zinc, tin,
lead, and/or barium).
The amount of fume produced per unit time de-

pends on the choice of welding parameters (cur-
rent, voltage, wire dimensions, etc.) and the weld-
ers' exposure is additionally influenced by the actual
job situation and degree of ventilation and/or fume
exhaust provided. The approximate cumulative dis-
tribution of workplace exposures to total fume for
the major technologies is shown in Figure 1. Shop
background levels (BG) are also given.
The curves shown are only valid between 15 and

85% and appear to be representative for the trades
indicated, data from Sweden, Denmark and the
U.K. agreeing to within about a factor of 2. The use
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Table 2. Distributions of Swedish welders by process and material.a

No. of welders
Process Total Mild steel Stainless steel Al Other

MMA 25,585 16,854 5,896 1,496 1,339
MIG + MAG 9,143 6,232 1,594 1,141 176
TIG 4,216 1,541 1,529 913 233
Gas 3,823 2,762 479 325 257
Sub. Arc 783 540 210 32 1
Total 43,550 27,929 9,708 3,907 2,006

aAdapted from Ulfvarson (3). The German data, although unavailable for publication in detail (8), indicate that, while in 1980 the
total number of welders has remained essentially unchanged from 1970 (see Table 1), there has been a reduction of about 25% in the
number ofMMA/MS welders and a corresponding increase in the number of welders using semiautomatic metal-gas techniques in this
decade. Note that in Sweden the ratio of MMA to MIG/MAG/TIG welders is aproximately 2:1, while in Germany it is currently 1:1.
Similarly 9% of the Swedish welding population works on aluminum alloys while only 3-4% of German welders are engaged in these
processes. The data generally agree with estimates made based on consumable sales in the individual countries, assuming
approximately 500 kg electrodes and 2500 kg wire per man year of MMA and MIG/MAG welding, respectively.
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FIGURE 1. Cumulative distribution ofworking place exposures
(%) vs. fume concentration (8 hr average) (mg/m3) for
stainless steel and aluminium welding (in Sweden) and
shipyard welding (in Denmark), including background levels
(BG), liberally interpreted from Ulfvarson (3) and Beck
Hansen (9).

of point extraction will reduce the average levels by
approximately a factor of two to three (3). Note
that for some applications a significant fraction of
welders is exposed above 5-10 mg/m3: levels above
100 mg/m3 have been occasionally reported.
Because of local variations in consumable compo-

sition and distillation effects in the arc which can
cause enrichment of the fume by as much as a factor
of 100 for volatile components, it would be ex-
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tremely difficult to make an a priori prediction of
exposure to the individual elemental components of
the fume based only on a knowledge of the process
technology and work piece composition. Fortunate-
ly, however, a great deal is known about the amount
and chemistry of welding fumes produced from
individual electrodes and processes, and the varia-
tions thereof. A comparative study of MMAIMS
fumes produced under standardized conditions by
Danish, Dutch, British and Swedish welders (10)
shows that locally, a welder or group of welders
produce an amount of fume per unit time for a given
electrode which varies by less than 3% within 95%
confidence limits, when well supervised, and which
varies by less than 18% (95% limits) when unsuper-
vised. National average fume production rates vary
by 3% from each other, when corrected for differ-
ences in the welding parameters actually used.
Variations arise because a given electrode can be
welded over a range of currents and voltages. Use-
ful welds can be produced over a range of current of
a factor of two, resulting in factor of two variation
in burning rate and hence in specific fume produc-
tion rate. Similarly, fume production per unit elec-
trode length is proportional to arc length (and there-
fore voltage) which also can vary by a factor of two.
Hence absolute fume production rates (and there-
fore concentrations and exposures) at maximum
currents and voltages are approximately four times
those at minimum values of the welding parame-
ters. In addition, extreme variations in welding
parameters can result in a variation of about +40%
in the relative concentration of the major fume
components: Trace elements (< 1% concentration)
can show much larger variations.
The results of laboratory measurement (10) of

total fume and elemental concentrations resulting
from the welding of a series of representative tech-
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Table 3. Average concentrations of important toxic substances for a representative selection of welding processes.

Steady-state concn in 10 m3, 3-5 kW, 25 sec per air exchange, t = 1 sec

Ozone
concn
(20 cm

from arc,
t = 1 sec), Ozone, Fume, NO2, Cr(VI), Ni, As. Cu. Pb, Mn,
ppma ppmb Rg/m3 ppm Rg/m3 ,g/m3 IIg/m3 .LgIm3 Rg/m3 tLg/m3

TLV 0.1 0.1 5000 0.3 c 1.0d 15d 2 200 150 800e
Ceiling idmit 0.3 0.3 1.0

Process
12.51, A, MIG/MS 0.22 0.8 x 107 15000 0.12 1.5 15 1.5 30 1.5 470
12.51, A+C02, MAG/MS 0.15 0.8 x 10 17000 0.015 0.5 1.5 0.5 50 3.0 1700
12.51, CG2, MAG/MS 0.55 2.8 x 10e 12000 0.048 0.5 1.5 1.2 48 4.0 840
FF11, CO2, MAG/MSI 0.88 4.2 x 103 25000 0.23 1.0 5.0 2.0 75 8.0 4000
3RS17, MIG/SS 0.31 5.6 x 1073 5000 0.23 35 250 0.5 30 5 350
18.15, A, AVIMIG 0.39 7.1 x 1073 22000 0.14 20 0.5 1 4
18.04, A, Al/MIG 0.72 3.3 x 1072 22000 0.11 0 0 -
18.01, A, Al/MIG 0.88 23000 0.06 4 1
OK 48.15, MMAMSg w10000 0.02 2 5 10 3 350
P 316, MMAISSh 10000 0.02 300 50 30 8 270
PK 46.16, MMAIMSh - 10000 0.02 3 1 3 30 3 500

aRemoval of fume will result in a longer time constant t and an increase in these values by a factor of 2-10; t = halflife in standard
welding fume.

bCalculated from near zone (r < 20 cm) only; practical levels will be higher by a factor of 2-5.
cProposed, NIOSH.
dProposed NIOSH limits for carcinogens.
eChange in 1980 from 5000.
gLow hydrogen.
hRutile-basic.

nologies produced under comparable, standard con-
ditions (3-5 kW) are presented in Table 3. The
values are the estimated steady-state concentra-
tions to be found in a 10 m3 volume with an air
exchange every 25 sec. Ozone concentrations de-
pend on the half-life for this reactive substance,
which is in turn determined by the amount and
nature of the fume present. For the sake of simplic-
ity, it will be assumed that these few processes are
representative for the industry, and these fumes
can be considered as surrogates for those compris-
ing the major exposures of welders.
By combining the data of Figure 1 with those of

Table 3, it is possible to estimate the relative frac-
tion of welders engaged in a particular trade whose
exposure will exceed a given Threshold Limiting
Value (TLV), and who by definition can be consid-
ered to be at "administrative risk." The fraction of
populations at administrative risk for different sub-
stances, as a function of technology and material
are shown in Table 4. In general, the majority of
exposures to other elements do not exceed the
respective TLV values provided the TLV for total
fume is not exceeded.
The estimates of Table 4 are based on the aver-

age elemental concentrations of the surrogate weld-
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ing fumes listed in Table 3. If one considers all the
common consumable types within each major cate-
gory, which are available industry wide, then a
given elemental concentration for a class of fume
can vary by a factor of three from these "average"
values. In spite of such variations, examination of
available data (1-3, 11) such as presented in Table 3
permits separation of welders into cohorts having
average exposures which can be expected to be
distinct with respect to the presence or absence of
certain characteristic substances, and hence which
might result in unique health risks.

The Health of Welders
Pneumoconiosis and Siderosis
The extremely rich literature of case histories,

health surveys, and hygienic measurements in the
welding industry has recently been catalogued (2).
The generalized risks of welding are indicated by
reports of cases of accidental death due to electric
shock, and occasional acute and sometimes fatal
intoxification due to inhalation of high concentra-
tions of Cd, ozone and oxides of nitrogen, and
manganese; metal fume fever due to exposure to
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Table 4. Estimated fraction of welders at administrative risk, defined as those exceeding the TLV for various substances as a
function of the process.a

Welders at risk, %

Mild Stainless
Substance TLV Source Process steel steel Aluminum

Total fume, ,ug/m3 5000 NIOSH accepted MMAb 75 45
Ni, ,ug/m3 15 NIOSH proposed, 1980 75

(carcinogenic)
Cr (VI), ,ug/m3 10 NIOSH, probable, 1980 98

(carcinogenic)
Mn, ,ug/m3 800 NIOSH, in effect, 1980 10 5
NO2, ppm 0.6 NIOSH proposed, 1981 10 (?) 20

Total fume, ,ug/m3 5000 NIOSH accepted MIG 8 90
Ni, ,ug/m3 15 NIOSH proposed, 1980 30

(carcinogenic)
Cr (VI), ,ug/m3 10 NIOSH, probable, 1980 75

(carcinogenic)
Mn, R.g/m3 800 NIOSH, in effect, 1980 60 5
NO2, ppm 0.6 NIOSH proposed, 1981 20 40
03, ppm 0.1 Accepted 2 20 40

Total fume, ,l/m3 5000 NIOSH accepted TIG 8 1
Cr (VI), ,ug/m 10 NIOSH, probable, 1980 8

(carcinogenic)
Mn, ,u1g/m3 800 NIOSH, in effect, 1980 5
NO2, ppm 0.6 NIOSH proposed, 1981 5
03, ppm 0.1 Accepted 2 20 1

aDerived from Table 3 and Figure 1. The fractional populations shown to exceed TLVs can only be estimated; the relative frac^tions
given are therefore uncertain to about 20% (with an absolute uncertainty of no less than 5% for the small values).
bApproximately 40% of all MMA/MS welders work on primed plates and are therby exposed to organic gases of unknown TLV

having concentrations ranging from 1 to 5% of those found for inorganic solids.

Zn, Cd, Pb, Sn, and/or Cu appears to be common.
Some risks are, however, obviously process-
dependent: e.g., exposure during the welding of
stainless steel in confined spaces to high concentra-
tions of fume containing water soluble Cr(VI) has
been reported to lead to acute and chronic chrome
intoxification, dermatitis and asthma (12-18).

It is difficult at present to estimate the absolute
incidence rates of these acute effects, since case
reports are isolated and must be interpreted in
terms of the 3-4 million man-years of welders' expo-
sure accumulated annually in the countries whose
literature is commonly cited. One might therefore
examine epidemiological studies of welders in the
hope of determining the absolute level of health
effects. Several recent cross-sectional studies would
appear to be based on sufficiently large local popu-
lations of welders to permit some quantitative de-
termination of the effects of chronic exposure to
welding fumes in several different localities and job
situations.
A survey of the occurrence of (legally defined)

pneumoconiosis (silicosis, asbestosis and silico-
asbestosis) during the decade 1966-1975 has been
conducted for the maritime-construction complex
240

La Spezia which has a total work force of approxi-
mately 12,000 individuals, among whom are an
undetermined number of welders (19). The relative
cumulative incidence (in percent of all 951 cases) vs.
exposure (in years) for the entire work force is
shown in Figure 2. Approximately 50% of the total
cases occur within 26 years exposure. The relative
cumulative incidence for those 143 individuals
identified as electric and gas welders is shown for
comparison. The median response for this subcohort
was at 23 years exposure. Since welders perform
their activities throughout the maritime complex,
they are exposed (as bystanders) to the same gen-
eral atmosphere as the average work force, and
therefore should have the same general pattern of
disease, superimposed upon which is the effect, if
any, of their specific welding activity. Since how-
ever neither asbestos nor crystalline silica appear
in welding fumes, this incidence of asbestosis and
silicosis among welders can only be due to bystander
exposure. From Figure 2 it can be seen that the
effect of welding would appear to be to accelerate
by approximately 10% (i.e., 2-3 years) the onset of
the pneumoconiosis characteristic for La Spezia, as
detected among the welding population. Since the

Environmental Health Perspectives
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FIGURE 2. Fraction of total incidence ofpneumoconiosis (%) vs. length ofexposure (years) for the total workforce in La Spezia as well
as for the welding subpopulation. Also shown is the fraction of total incidence of small round opacities (1 mm or greater) vs. length
of exposure (years) for British shipyard welders.

relative size of the welding population appears to be
unknown, the absolute incidence rate for their pneu-
moconiosis cannot be compared with that of the
general shipyard population. It is however difficult
to imagine that the numbers of welders with
silicosis/asbestosis compared to the entire group
(143/951 = 15%) could be different from the ratio of
welders to total exposed employees, without there
being a significant variation in the respective inci-
dence patterns. This conclusion is justified by the
observations of a contemporaneous clinical study of
randomly selected shipyard workers in Trieste which
shows that welders exhibit a lower incidence of
pleural changes (lesions and calcification: 10/37 =
7.3%, 2/137 = 1.5%) than the average of all shipyard
employees (63/556 = 11%, 26/556 = 4.4%) who in
general exhibit a 10-20 fold excess incidence of
bronchopneumopathies compared to the general popu-
lation (20).

In a second article (21), diagnostic chest x-rays
from 661 British shipyard welders were examined
by a panel of three readers to determine the abso-
lute incidence of small round opacities of class 0/1 or
October 1981

higher (i.e., larger than 1 mm: "siderosis") as a
function of welding exposure. The relative cumula-
tive incidence for the 51 positive cases is plotted on
Figure 2 as well. It can be seen the data follows a
lognormal distribution, with approximately a 10
year median delay in detection of siderosis for
British welders compared to the detection of pneu-
moconiosis in Italian welders, and that the low
exposure tail appears to be missing. The British
welders also worked in all sections of the shipyard,
using a wide variety of processes, mostly MMA,
but including MIG and TIG techniques (apparently
absent in the La Spezia work experience).
The absolute cumulative incidence for siderosis

vs. length of exposure among the British welders is
shown in Figure 3: Data for a cohort of 220 (East)
German welders (22) is shown for comparison. After
the average length of employment of 17 years,
approximately 1.6% of the British welders exhibit
detectable x-ray mottling (caused by the local ac-
cumulation of welding fumes (mostly Fe3O4) having
a high x-ray opacity). Doubling the exposure time
results in a tenfold increase in incidence. The inci-
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FIGURE 3. Fractional incidence of small round opacities (% of total cohort) vs. length of exposure (years) for British shipyard
welders, and for siderosis for (East) German shipyard welders.

dence of other anomalies, and of grade III siderosis
(opacities of 3 mm or greater) is also shown for the
total population. The (East) German welders show
a considerably different pattern of incidence of sid-
erosis, with approximately 45% demonstrating de-
tectable x-ray mottling after an average exposition
of approximately 14 years: the incidence of grade
III siderosis after this exposure is 1%.

Since the British welders are estimated to have
exposure of approximately 5 mg/m3, one can con-
vert the length-of-exposure data to cumulative ex-
posure (mg/m3 years), as is shown in Figure 4. For
comparison are shown the cumulative incidence
data for silicosis for gold and for coal miners (23),
since they represent the classic case of a lognormal
dependence of cumulative incidence on total expo-
sure. Average exposure levels in the East German
shipyard would have to be 25-35 mg/m3 for the
incidence vs. cumulative exposure data to be com-
parable in the two cases.
The absolute incidence rates for siderosis for the

British and (East) Gennan shipyard populations
were 400/100,000 and 1500/100,000 cases/man-year,
242

respectively. The two studies are comparable how-
ever only if similar age distributions exist in both
shipyards. British welders form a homogeneous
group, having started work at age 17 with a univer-
sal apprenticeship, while the (East) German weld-
ers, who have an average age of 36 (compared to 34
for their British colleagues) commenced their work-
ing exposure at the average age of 23, some 6 years
later, and presumably have some other type of
early working experience. (The Italian working
experience is very similar to that of the East Ger-
man group.) The striking variation in siderosis inci-
dence between the groups may have a number of
origins: there is most likely a significant difference
in exposure in the shipyards studied, but there
might be significant differences in lung retention in
the two cohorts due to age or genetic factors. It is
also possible that criteria for reading thoracic x-rays
may vary from country to country.
The siderosis discussed above, as found in ship-

yard and other welders is usually described as
"benign", the x-ray mottling regressing after cessa-
tion of exposure in most cases (24). Some smaller
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for British shipyard welders (assuming 5 mg/m3 average fume concentration). Similar lognormal behavior is found for coal miners
and gold miners, each with a characteristic median exposure.

fraction of welders exhibits complex welder's pneu-
moconiosis characterized by irreversible changes
including fibrosis (17, 25) which may be due to
specific welding exposure, particular individual sen-
sitivity, or may be an expression of a bystander
effect similar to that seen for the La Spezia welding
population.
Most shipyard welding is done on primed plates

of mild steel. Stainless steel welding is usually
performed in shops dedicated to such activity. In
one clinical study of 95 welders employed in an
Italian metalworking shop using a wide range of
technologies on both mild and Ni- and Cr-rich alloy
steels, for those welders with more than 10 years
experience only 8% show normal thoracic x-rays,
25% have normal respiratory function, and only 8%
do not exhibit chronic bronchitis: all demonstrate
squamous metaplasia of varying degrees (26).
Examination ofthe cross-sectional studies described

above and others published in the literature of the
past decade indicates that each subcohort appar-
ently exhibits a health pattern characteristic for its
own local working environment, to which a number
of factors contribute. The fact that the welding
October 1981

cohort in one English shipyard exhibits approxi-
mately 8% abnormal thoracic x-rays (2% siderosis,
0.5% cancer, 3% tuberculosis, 4% other) while the
cohort of a German shipyard exhibits 50% siderosis
after the same length of employment is most prob-
ably an expression of different degrees of exposure
to similar materials: productivity, arcing time, and
electrode dimensions are probably higher, and ven-
tilation poorer, in the East German yard, although
this supposition can only be verified by direct mea-
surement. On the other hand, the fact that 92% of
welders in a workshop with mixed exposures to
mild and stainless steels have abnormal thoracic
x-rays, together with a high incidence of squamous
metaplasia is more likely a reflection of the pres-
ence of metals such as Cr and Ni in the fumes from
alloy steels, usually absent from the mild steels
used in shipyard construction.

Pulmonary Function
Cross-sectional studies of pulmonary function,

which should be more sensitive than clinical x-ray
surveys for the detection of the effects of exposure
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to welding fumes, are also difficult to interpret
because of two major confounding effects: smoking
and population dynamics (e.g., worker self selec-
tion). The effects of smoking and age on ventilatory
function of the general population have been stud-
ied in detail (27). In studies on welders (28), no
statistically significant differences between welders
who smoked and controls who smoked could be
detected: for nonsmoking welders and controls, only
closing volume, closing capacity, total lung capacity
and N2-cardiogenic oscillations were significantly
different, presumably due to the deposition of weld-
ing fume particles in peripheral small airways. Stud-
ies of respiratory effects in other populations in the
metal industry can show more pronounced effects
(29), although they may not become apparent until
after 30 years exposure or longer (30) for some
occupations.
The role of population dynamics through worker

self selection among the welding population has
been demonstrated (31). Of 100 welders first exam-
ined in 1963, only 19 could be identified and reexam-
ined in 1978 in an effort to determine the effects of
15 years of exposure to welding fumes. For the two
cohorts the average values of forced vital capacity
(FVC), maximum expiratory flow volume at 50%
vital capacity (MEFV50) and forced expiratory vol-
ume over the first second (FEV1) were found to be
higher in 1978 by approximately 4%, 0.6% and 4%,
respectively. This apparent slight increase in the
respiratory function of these welders is however
due to the fact that while the initial cohort had
values ofFVC, MEFV50 and FEV1 ofapproximately
108, 107 and 105% of normal, respectively, those
welders with more nearly average respiratory char-
acteristics left the occupation and could not be
reexamined. Those welders who remained, howev-
er, were the individuals whose respiratory charac-
teristics were the highest, having in 1963 values of
FVC, MEFV50 and FEV1 of 115, 119 and 113% of
normal, which in fact had been reduced on the
average by 4, 13 and 6% after further 15 years
exposure, with various differences in degree and
statistical significance due to smoking habits. The
opportunity to change jobs is a function of the
regional economic situation which has strong varia-
tions with time and locality. Thus cross-sectional
studies which only examine the age distribution
e.g. (28) may underestimate the real effects of
exposure on a constant population, and variations
in population dynamics (i.e., job mobility) may be
strongly reflected in differences in cross-sectional
studies from widely disparate societies.
The literature discussed above demonstrates the

existence of statistically significant exposure related
incidence of chronic respiratory tract disease in

244

welders also documented elsewhere (32, 33), and
hence there appears to be convincing evidence for a
finite risk of delayed health effects for the welding
occupation in general. On the other hand, a significant
fraction of welders is employed in shipyards, and
shipyard workers in general exhibit a statistical
overincidence of chronic respiratory tract disease
(34, 35), including cancer (35, 36). Thus there is a
strong possibility that shipyard welders are par-
tially at risk because of bystander effects related to
their place of employment but unrelated to weld-
ing.

Possible Cancer Risk for
Welders
A number of epidemiological surveys of general

welding populations have shown statistically
significant overincidence of lung or respiratory tract
cancer for this occupation (32, 33, 36-39) the data of
five of these studies (32, 33, 37-39) is reviewed in
Table 5. The five studies encompass some 150,000
welders, represent approximately 420,000 man years
at risk, and show an accumulated observed inci-
dence of 415 cases with 308 cases expected, assum-
ing an observed/expected (O/E) ratio of unity for
unexposed populations. Although there are slightly
different approaches taken in each of the studies,
the range ofO/E incidence ratios lies between 1.0-2.8
(95% confidence limits) (0.85-3.2 within 99% confidence
limits), to be compared with an O/E ratio for unex-
posed but equivalent populations of the order of
0.6-1.0 (95% confidence limits) (uncorrected for smok-
ing) (40). Thus there is sufficient evidence to reject
the null hypothesis that welding or being a welder
does not contribute to occupationally related cancer
incidence.

If the statistically significant overincidence of
respiratory tract cancer among welders is due to
their occupation, is not a bystander effect (36) and
is not due to some systematic confounding effect
such as smoking habit (welders exhibit an over-
prevalence of smoking by 22%) (32) or other life-
style effect, then it may have its origin partially in
the general working place exposure of all welders,
and partially in specific, high risk exposures. A
general occupational risk might arise from the lung
burden of dust [approximately 2 g in older welders
(14)] which, if it resulted in an increase of the order
of five years in "lung age" over chronological age,
could account for the observed overincidence in age
specific cancer rate. Technology or job specific risk
would be associated with processes which produce
welding fumes possessing high carcinogenic potency
(i.e. "hot spots").
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Table 5. Summary of epidemiological studies of welders which demonstrate a statistically significant excess incidence of
respiratory tract cancer.

Reference O/E Study design and
Author Locality populationa Eba O/E pd 95%e population

Milham (39) Wash. state, U.S. age- 67 49 137 0.05 1.2-1.7 White males; deaths from
U.S. adjusted (PMR) cancer of trachea, bronchus,

lung (1951-70); 2000-3000
welders

Menck (37) Los Angeles LA Co. age- 21(d) 34 137 0.05 1.0-1.8 White males; lung deaths (d)
Co. specific 27(i) (d + i) (1968-70) plus 2 yr incidence (i)

(SMR) (1972-73); 15,300 welders
Dec. Suppl. Great National 246 192 127 0.01 1.3-1.8 All males; lung deaths (1968-69);
(32) Britain age-adjusted (PMR)I 128,000 welders

151 0.01
(SMR)
116
(SMR)9

Beaumont and Seattle, U.S. age- 53 40 1.31 NS 0.98-1.6 White males; respiratory cancer
Weiss (33) Wash. adjusted (SMR) deaths (1950-76); 3200 welders

40 23.7 1.69 0.01 1.1-2.3 and burners (base rate
(SMR) 38/100,000)

Breslow California Noncancer 14/16h 9/16h 1.5 0.05 1.1-1.9 Males, lung cancer patients
et al. (38) patients in (1949-52); 493 cases; 493

same hospitals controls matched for smoking
habits; 5 yr employment as
welders and sheet metal
workers doing welding

aThe number expected for any given cohort is extremely dependent on the reference population chosen and hence the
observed/expected ratio will exhibit the same sensitivity.

bObserved.
CExpected.
dSignificance.
eLimits to O/E within 95% confidence interval.
fPMR social class adjusted.
9SMR adjusted for smoking [excess incidence = 122% = SMR (expected) 110-160 = 135 smoking adjustment: 151-135 = 116).
hProportion of cases among welders (14 cases, 2 controls).

Individuals who occupationally perform welding
fall into several distinct categories. In countries,
like Great Britain, with a well defined apprentice-
ship system, workers enter the welding trade at
the age of 17 and remain for the major fraction of
their working life (21). Approximately one half of
this population is itinerant within the trade, being
occupied with a wide range of technologies both
daily and within a working lifetime. Perhaps an
equal number of individuals are engaged in rather
well defined and limited range of welding situa-
tions, and are exposed over relatively long periods
to a narrow range of types of welding fumes (e.g.
stainless steel welders). In addition to these fulltime
welders there exists a large population of individu-
als in other jobs who weld occasionally and who
contribute of the order of 30% fulltime equivalents
to the populations listed in Table 3.

Since the nominal composition of the fumes from
most welding processes is known (1-3, 10), it is
instructive to examine the technologies most repre-
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sentative for the industry in order to determine if
there exist well defined cohorts who might suffer
excessive exposure to suspected carcinogens, and
conversely, to identify unexposed cohorts who might
serve as control groups. If the welding population
can be shown to have a sufficiently inhomogeneous
exposure to carcinogens, one could then address
the problem of identifying, quantifying, and elimi-
nating the "hot spots" thereby defined.
Of the five metals which have been identified or

strongly suspected as being human carcinogens (in
some frequently unknown form) [As, Be(?), Cd, Ni,
Cr] (41-47), nickel and chromium appear in significant
concentrations only in the fumes from stainless and
alloy steels, arsenic is a ubiquitous trace impurity
in most welding fluxes, cadmium is absent from
welding consumables but occurs in many brazing
alloys (an allied but separate trade), and beryllium
is most probably present only in certain highly
unique situations. Approximately 40% of all MMA
welders (on mild steel), mostly those employed in
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Table 6. Typical exposures (8 hr).

Exposure, ,g/m3
% of Cr(VI)

welding Benzo Total (water- Cut-
popula- Total (a) organic Total soluble/ Total As- ting
tion Process fume Fe3O4 pyrene (gaseous) Cr insoluble) Ni As bestos Oil NO2 03

36 ± 5 MMA/MS 5000 2000 0.06 15 0.5 0.25/0.25 - 2.5 +b + + -

unprimeda
24 ± 5 MMA/MS 10000C 4000 ? 300c,d 1.0 0.5/0.5 - 5 +b ? +

shop primed
surfacesa

10 ± 5 MMA/MS 5000 500 - - 200 140/10 50 - - + + -
2 ± 1 MIG/SS 2500 1250 - - 250 20/5 125 - - + + -
3 ± 2 AL/MIG 10000 800 - - 8 4/4 - - - - + +

aMIG/MS and MAG/MS values are expected to be similar to corresponding MMA/MS exposure but depend to such a great extent on
consumables etc. that MIG/MS and MAG/MS welders cannot be assumed to form a homogeneous exposure group.

bShipbuilding and structural steel trades.
cAssuming a zinc-based primer.
dAssuming a formation rate of 3 ± 2% of that of total fume.

shipyards, utilize base material coated with shop
primer, an antirust compound, usually a polyvinyl
butyral or phenolic or epoxy resin, containing iron
oxide and/or zinc tetraoxychromate. Welding on
this material produces a fume containing 1-3% or-
ganic gases from the pyrolytic decomposition of the
primer. In addition to aldehydes, alcohols and ke-
tones, this organic "soup" has been shown to con-
tain a vast variety of compounds such as naphtha-
lene, methylbenzofurene, phenol, cresol, dioxane,
pyridine, 2,4-dexadienal, 2-hexanone, and benzene
and other saturated and unsaturated alphatic and
aromatic hydrocarbons (C6-C14) (48, 49) and there-
fore must be suspected of possessing some carcino-
genic potency of unknown but nonzero magnitude.
Most other welding fumes are free of organic mate-
rial (a notable exception being that from cellulose
electrodes used on pipelines).

In addition to welding fumes, bystander expo-
sure to carcinogens might be significant: at least
40% of all welders have some historical contact with
asbestos (21, 39), while those working in machine
shops have occasional exposure to cutting oil mist, a
suspected sinonasal carcinogen (50, 51). Most weld-
ers are exposed to iron oxide particulates, which
alone are probably inactive, but which appear to be
a cocarcinogen for benzo(a)pyrene (52) which has
been identified in some workshop backgrounds (3).
The magnitude of possibly carcinogenic exposures
which are expected to accompany the use of some
representative welding technologies is summarized
in Table 6, derived from nominal concentrations
and compositions shown in Figure 1 and Table 3,
respectively.
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Semiquantitative Risk Assessment
The ubiquitous exposure of most welders to pos-

sible work place carcinogens as illustrated in Table
6 might well explain the observed excess incidence
of respiratory tract cancer summarized in Table 5.
The demonstrated 5:1 excess incidence of meso-
thelioma among dockyard welders in Plymouth,
England (36), giving an absolute rate of 80/100,000
cases/man year could contribute only of the order of
10% to the average overincidence of welders respi-
ratory tract cancer if this "signal" cancer due to
asbestos exposure is included, although no specific
mention of this tumor is found in the studies listed
in Table 5. Naval dockyards in general, and Plym-
outh in particular, may represent a mesothelioma
"hot spot." On the other hand, it is tempting to try
to estimate what fraction of actual risk is repre-
sented by the exposure of stainless steel welders to
Cr(VI) and Ni since, because of their skills, they
represent a coherent cohort with reasonably well
defined exposures with a minimum of confounding
effects (no asbestos), and the health effects of occu-
pational exposure to Ni and Cr have been studied to
a great extent in the respective (nonwelding) Ni
and Cr industries (41-47).
Although a linear dose-response model is proba-

bly inappropriate for human cancer (53), and the
available and relevant information is fragmentary
and frequently inaccurate, one can attempt a sur-
vey of exposure-response data found in the litera-
ture of epidemiological studies carried out in the
chromium and nickel industry. A tentative sum-
mary of relevant data is presented in Table 7. Here
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Table 7. Approximate carcinogenic dose-response relationship.

Total metal (cumulative Absolute lung cancer
exposure), mg/m3.yra incidence rate/100,000 Latency, yr (average)

Age group
at risk (average)

Chromium industry Total Cr(VI)
Cr plating (54) 0.5 < 360b (16) (58)
Ferrochrome (55) 0.44 100 5-42 54-79

(21)
Chromate (56) 2-25 600 8-39 45-64

(4) (22-32)
Chrome pigment (57) 2.0 760 5-21
Chrome pigment (58) (15) (50)
Average Cr(VI) 3 ± 2 500±250 (21)-(15) 45-79

Nickel refining industry Total Ni
(Clydach) (59, 60) 11-110C 64 (lung) 15-40 44-79

Averagec 33 21 (nasal) 20-34 (68)

aEstimated geometrical average.
bMaximum consistent with observed nonsignificant overincidence.
CExposure is to Ni(CO)4 + Ni + NiO + Ni3S2.

estimated geometrical-average cumulative exposures
to Cr(VI) and average lung cancer rates are listed
together with the relevant age group and range in
latency period for the four industries: chromium
plating and ferrochrome, chromate and chrome pig-
ment production (54-60). Exposure in the case of
chromium plating is principally to water-soluble
Cr(VI), while in the other three industries it is to a
varying mixture of Cr(VI) and Cr(III) of different
solubilities. The values shown must be considered
highly uncertain and the tentative conclusion that
these industrial exposures can be considered to
result in an approximately similar risk per dose in
the range shown must be considered extremely
speculative, since an additive model of carcinoge-
nicity with a single causitive agent is implicitly
used. Note that if the distributions of exposure
shown in Figure 1 are typical in other industries,
there is approximately a range of a factor of 16 for
the exposure levels of 90% of the cohorts studied.

Historical exposures are extremely difficult to
estimate since even in those cases where reliable
concentration measurements have been made, they
show such a wide interindividual range that one can
question the statistical use of a geometrical (or any
other) average: compositions can frequently only be
arrived at by an educated guess, leading to an order
of magnitude uncertainty in estimates for total
exposures. Furthermore, for the case of Ni and Cr,
the actual causative agents are unknown and there
is emerging evidence that at least for Ni, there is an
extremely wide variation of carcinogenic potency
for different substances.

In spite of the obvious speculative nature of the
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data of Table 7 one could attempt to use the dose-
incidence data to predict order of magnitude effects
for stainless steel welders. A 20-year exposure to
the average Cr(VI) concentration of 0.15 mg/m3
found for MMA/SS welders would give an average
total Cr(VI) exposure of 3(mg/m3) (years), similar
to that found in Table 7 in the chromium industry,
and hence might be expected to lead to the same
magnitude of cancer incidence. Obviously the expo-
sure, and hence on this simple model the expected
incidence rates, for MIG/SS welders are of the
order of a factor of six lower than for MMA/ SS
welders. The risk for Ni for these trades, although
non-zero, is negligible compared to that for Cr(VI),
with the exception of the relatively few MIG weld-
ers using pure Ni filler wire. Such interindustrial
comparisons, if appropriate, can also be used as an
aid in the proper design of epidemiological studies
by indicating those exposure levels, latency peri-
ods, and cohort sizes consistent with detection of an
effect at an acceptable level of significance. For
example, a cohort of some 200 MMA/SS welders
exposed at high total fume concentrations (10 mg/i3)
for the period 1950-1955 and followed to 1980 should
provide statistical material just sufficient to verify
or reject the model presented above.
One unavoidable conclusion to be made based on

the preceeding discussion is that unless water solu-
ble Cr(VI) is not a carcinogen of potency compara-
ble to that of other industrial Cr(VI) exposures, the
manual metal arc welding of stainless steel with
conventional electrodes represents a "hot spot" for
risk of occupationally related respiratory tract can-
cer. Should this exposure represent a potential
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overincidence of a factor of three (SMR = 300),
then the 10% subcohort of MMA/SS welders could
contribute to approximately a 30% overincidence
for the entire industry (SMR = 130). It is not clear
in which direction systematic errors and bias in the
selection of data will effect such a zeroth order risk
assessment. Certainly the probable nonlinearity of
the dose-incidence relationship will provide for a
disproportionately large effect among those indi-
viduals with significantly higher than average ex-
posures.

Since there is as yet little epidemiological data
(on selected subcohorts of welders with restricted
exposures) on which to attempt an evaluation of the
type of risk assessment proposed above, justification
for the supposition of process-dependent "hot spots"
(especially of genetic risk) must be sought on the
basis of indirect (i.e., nonhuman) experiments on
the (geno)toxic properties of welding fumes.

Screening Tests for Mutagenesis
and Carcinogenesis

Utility of Screening Tests
Because of the existence of an extraordinarily

wide variety of welding atmospheres, a direct de-
termination of toxic risk for welding fume by tradi-
tional in vivo methods is impractical: such studies
would only provide information concerning a single
process or group of processes and only with difficulty
could be extrapolated to a larger segment of the
industry. Similarly evaluation of most single pro-
cesses by means of human epidemiology is imprac-
tical. On the other hand, short-term screening tests
for mutagenesis and carcinogenesis would appear
to be ideally suited for use in evaluating the relative
genetic risk entailed by exposure to various weld-
ing fumes assuming that the obvious problems con-
cerning exposure-related dose for such complex
aerosol systems can be resolved. The fumes have an
aerodynamic mass median diameter (MMD) of the
order of 0.2 ,um (61) (MMA fumes have an addi-
tional component with MMD = 1 ,um) and a demon-
strated elemental deposition in the human respira-
tory tract of the order of 30-40% (62).

Despite the uncertainty in the relationship be-
tween mutagenicity and carcinogenicity of metals
(41, 42, 47, 63-66), semiquantitative fast in vitro
screening methods could be used to assess relative
risks of welding fumes of similar composition by
studying the origin of variations of genotoxicity and
hence by implication their possible carcinogenic
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potency (67-69). Such conclusions can be based on
the expectation that a number of steps which de-
termine specific (i.e., molar) genotoxicity in vitro
(solubility, species formation rate and activity of
intermediate metalorganic metabolites, membrane
diffusion, the nature and efficiency of detoxification
pathways and repair mechanisms, and particle cell
interactions (such as phagocytosis) ) can be expected
to exist in vivo as well (70-75).
Although at present there is not sufficient infor-

mation to be able to interpret the significance of the
general observation of mutagenicity of a large num-
ber of the metals many of which can be found to
some degree in various welding fumes, there would
appear to be strong incentive to examine the possi-
bility for the in vitro risk assessment of nickel and
chromium, not only because of their importance in
welding, but because of the widespread worker
exposure in other industries. The development of
specific screening techniques for Ni and Cr welding
aerosols, and the subsequent demonstration of their
general applicability would be a significant step in
industrial hygiene.

Mutagenicity of Ni and Cr
The present state of understanding of the muta-

genicity of Ni and Cr has recently been reviewed
(42, 47, 66, 76). Nickel induces base-pairing aberra-
tions of nuclear acids, infidelity of DNA replication,
chromosome aberrations in cultured mammalian cells,
sister chromatid exchange in cultured human lym-
phocytes in vitro and aberrant DNA synthesis and/or
repair and binding to nuclear macromolecules in
vivo. Neoplastic cell transformation can be induced
by particulates of crystalline Ni3S2 (a potent exper-
imental animal carcinogen) which excite phagocyto-
sis but not by amorphous NiS (a concarcinogen).
Hexavalent chromium, Cr(VI), induces infidelity

of DNA replication, is mutagenic in bacterial test
systems (B. subtillis, S. typhimurium), and in-
duces chromosomal aberrations and aberrant DNA
synthesis or repair in 'tissue culture cells in vitro.
The cytotoxic activity of Cr(VI) is eliminated by the
extracellular reduction to Cr(III), an oxidation state
for which there is little membrane permeability. On
the other hand Cr(III) is highly effective in induc-
ing infidelity of DNA synthesis, indicating that
Cr(III) may be the ultimate carcinogen and that
reduction of Cr(VI) at a target molecule may be the
critical carcinogenic step (77). Only CaCrO4 has
been established as an experimental animal carcin-
ogen, and there is considerable uncertainty about
the exact role played by solubility of Cr(VI) com-
pounds in the determination of their carcinogenic
potency (42, 43, 47).
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Table 8. Range of distribution in oxidation state and solubility fraction for Cr and Ni in stainless steel welding fumes.

Serum-soluble, %
Process and
oxidation state Water-soluble, % pH = 8.8 pH = 7.0 Insoluble, % Total, %

MMA/SS
Cr (III) + Cr 0 0.2-2.1 0.2-2.1
Cr (VI) 2.2-4.3 0.03-0.42 2.2-4.3
Total Cr 2.24.3 0.2-2.5 2.4-6.4
Ni 0.01-0.3 0.27-1.6 0.38-1.9

MIG/SS
Cr (III) + Cr 0 3.56-13.78 3.56-13.78
Cr (VI) 0.005-1.5a 0.01-0.42 0.02-2.0
Total Cr 0.005-1.5 3.60-13.8 4.06-15.3
Ni 0.05-0.25 3.5-6.3 3.5-6.5

MIG/Nib
Ni
Ni:NiO = 1:1 0.2-0.4 0.5-1.2 13-43 69-72
Ni:NiO = 1:10 0.2-0.35 0.5-0.6 7-9 56.3-68.3

aDecays rapidly (is reduced to 0.5% after 24 hr at room temperature) (78, 79).
bData of Nieburh et al. (80).

Mutagenicity Studies of Welding
Fumes
A number of pilot studies have recently been

undertaken to determine the extent and origin of
genotoxicity of welding fumes. Such a study is
necessary in any attempt to rank fumes from vari-
ous processes in terms of relative genetic risk. The
need for rapid screening methods can be inferred
from Table 8, which shows the range of Cr and Ni in
various solubilities and oxidation states in some
typical MIG/SS and MMA/SS welding fumes. It can
be seen that relative concentrations of individual
components vary by an order of magnitude even in
the limited sample shown here, and presumably
some rapid method must be developed to determine
the risk associated with each of the various combi-
nations of metals produced.

Stainless steel welding fumes are positive in the
Salmonella histidine revertant plate incorporation
test (81, 82), where the active mutagen has now
been shown to be Cr(VI) (83, 84). Fumes from
MIG/SS show a specific (molar) revertant rate equal
to that for their water soluble Cr(VI) content while
those from MMA/SS show a reduced rate indicative
of an antisynergistic effect. The addition of micro-
somes results in a (occasionally complete) reduction
of the effect. The test system is negative for fumes
which contain only Ni, and for others in which
Cr(VI) is absent (including those from mild steel
welding processes).
A slight but statistically significant increase in

mutagenicity is observed for stainless steel welding
fumes in the N-thioguanine resistence of V79 chi-
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nese hamster cells which survive exposure to the
highly toxic material (82).
The recessive lethal test in drosophila is negative

for exposure in the larval stage to MIG/Ni fumes (a
mixture of Ni:NiO) and to MIG/SS particles, and to
fresh MIG/SS fume in the adult stage. No significant
enhancement for adult sensitivity to DES was found
to result from fresh MIG/SS exposure (83).
Aqueous solutions of NiSO4 and aqueous and

(fetal calf) serum-soluble fractions prepared from a
Ni rich welding fume (MIG/Ni) demonstrate equal
specific activity in inducing sister chromatid ex-
change in human peripheral lymphocytes in cul-
ture. The serum solubility of both Ni and NiO is
extremely high at physiological pH (7.2), as shown
in Table 8 (80).
Water-soluble Cr(VI) and fumes from an MMA/SS

welding process representing an equivalent Cr(VI)
dose show similar transplacental genotoxic potency
in interperitoneal administration in the mouse spot
test (Fleckentest) (85, 86). Stainless steel fume
particles are cytotoxic and genotoxic in cultured
mammalian cells (87, 88).
From these pilot studies it can be seen that

Cr(VI) and Ni as contained in welding fumes ap-
parently exhibit the same types of genotoxicity as
is expected for these metals in general (60, 73, 89,
90). Since there is no evidence to the contrary, one
should assume that the actual risk for genetic dam-
age and other delayed health effects to welders can
be expected to be similar to that found in other
industries with exposure to these substances. The
presence of some unique combinations, such as ozone-
Cr(VI), Ni-Mn, however, might result in local
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synergistic or antisynergistic effects, which should
be studied in detail.

Summary and Conclusions
Throughout the industrialized world the welding

industry is found to provide a relatively large popu-
lation with a potential exposure to high concentra-
tions of a wide range of toxic and biologically active
material, occupational exposure to some of which,
albeit in other forms and in other industries, is
suspected of inducing human respiratory tract can-
cer. In vitro and in vivo studies of some representa-
tive welding fumes demonstrate mutagenic, embry-
otoxic, cytotoxic and genotoxic potential. Epidemi-
ological studies show that welders exhibit a
statistically significant excess incidence of respira-
tory tract disease, including cancer, which appears
to depend on cumulative exposure. Further evi-
dence implies that specific occupational risk, espe-
cially of delayed health effects, may be extremely
process-dependent. There is also strong evidence
that the local workshop environment significantly
influences the degree of such risk. The factors
which can effect the absolute health risks experi-
enced by different welding cohorts should in princi-
ple be controllable if they can be identified. A
demonstration that inhomogeneous risks are pri-
marily restricted to "hot spots" would have major
implications for the assignment of priorities for the
use of limited resources for risk reduction within
the industry.
The first indication of a significantly enhanced

lung cancer risk (i.e., a "hot spot") for a cohort of
stainless steel welders which satisfies the necessary
criteria of length and magnitude of exposure, and
latency period has recently been published (91).
For the cohort studied (234), mostly MMA/SS weld-
ers with a minimum of 5 years experience: average
exposure of 16 years (3735 man-years) to Cr(VI)
concentrations of approximately 216 ,ug/m3) three
cases of respiratory tract cancer were found vs.
0.68 expected. The average cumulative exposures
of3.4 (mg/m3 years) result in a risk rate of 82/100,000
cases/man-year with a local background of 18/100,000:
a risk ratio of 4.4:1. These observations lie within a
factor or two for the risk ratio and within a factor of
six for the absolute excess incidence rate predicted
for this exposure to Cr(VI) by the crude semi-
quantitative risk assessment model presented. Al-
though it is obvious that there is not as yet sufficient
evidence on which to test any health risk model for
welders, it is clear that the combination of risk
assessment methodologies and good epidemiologi-
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cal data will be a powerful tool for the future.
The international welding industry would appear

capable of providing a large number of model popu-
lations on which to base the development of tech-
niques of multifocal epidemiological studies to de-
termine the origin and extent of process-specific
risk. Great care must, however, be taken in design
of the study protocols to cope with the observed
differences between various welding populations.
Recent discussions concerning the variation in age
adjusted lung cancer incidence with occupation found
for local populations (55), and the strong urban-
rural gradient (92) which they exhibit, point to a
possible uncertainty in expected incidence rates of
a factor of from two to four: the results of multifocal
epidemiological studies carried out on essentially
similarly exposed populations would be extremely
useful in helping to establish guidelines for the
choice of appropriate reference populations, with-
out which it may be extremely difficult to prove the
existence of occupationally related excess cancer
risks. The parallel development of in vitro fast
screening tests for mutagenesis and/or carcinogen-
esis appropriate for use with metallic particulate
aerosols might provide a unique opportunity for the
establishment of practical risk assessment proto-
cols for use in the metal industry in general. The
resulting protection against exposure to carcino-
gens should reduce the risk for genetic effects in
general (93).
Without the development of risk assessment meth-

odologies, protective legislation (i.e., TLVs) based
on the concept of homogeneous risk, if set at the
lowest feasible level, will penalize industries with
low risk exposures, while elevated compromise lev-
els might permit dangerous exposures to unidentified
high risk material. Finally, it should be pointed out
that the wealth of technologies available to this
important, populous industry ensures that if "hot
spots" of risk can be identified, the means of reduc-
ing risk at the source are at hand, provided appro-
priate alternate low risk procedures can be identified.
Added in proof: Analysis of the citations of a

recent literature search (2) has uncovered over 100
cases of welders who exhibit abnormal epithelial
proliferation ("fibrosis"). For the more than 70 cases
for which welding history is known and diagnosis is
verified by pathology, the observed incidence is
uniformly distributed over starting age (13-52 years)
and length of exposure (3-40 years), and does not
appear to indicate any specific process-dependent
risk (e.g., stainless steel welders account for 5-10%
of the welding population), although in vitro studies
show that fumes from stainless steel welding have a
high fibrogenic potential compared to those from
other processes (94).
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